UNIT 1
 Digital Systems and Binary Numbers

1 Digital Systems

What is Digital System?

- Digital System: is a system in which signals have finite number of discrete values (electric impulses, decimal digits, arithmetic operations, etc.)
- Analog System: is a system in which signals have infinite number of values (electric voltage that vary with time).
- Synchronous: Systems where signals may change only at discrete instants.
- Asynchronous: Systems where signals may change at any instant.

Figure 1.1: System 5: a] Block diagram. b) Analog I/ O signals. c) Digital I/O signals. d] $1 / \mathrm{O}$ sequance pair.

Why Are Digital Systems important?

- It is well suited for numerical and non-numerical information processing.
- Information processing can use a general-purpose system (computer).
- The finite number of values in a digital signal is represented by a vector of signals with just 2 values (binary signals).

- Digital signals are quite insensitive to variations of component variable values.

Figure 1.2: Sqparation of digital घgnal value.

- Numerical digital systems can be made more accurate by increasing the number of digits used in the representation.
- Complex digital systems are built as integrated circuits composed of a large number of very simple devices.
- It is possible to select among different implementations of systems that trade off speed and amount of hardware.

When Are Digital Systems Used?

- Digital representation and processing methods widely used
- Extraordinary progress in digital technology and use Indispensable in modern society
- New applications fueled by the development of computer technology
- Knowledge about the design and use of digital systems required in a large variety of human activities

Analog and Digital Signals

- The process of converting from analog to digital is call quantization or digitization.

Combinational and Sequential Systems

- Digital systems are divided into 2 classes:

- Combinational systems: the output at time t depends only on the input at t.
- $z(t)=F(x(t))$
- In this case we can say that the system has no memory b/c the output doesn't depend on previous inputs.
- Sequential systems: the output at time t depends on the input at time t and possibly on the input prior to t.
- $\quad z(t)=F(x(0, t))$
- where $x(0, t)$ is the input sequence from time 0 to time t.

(a)

(b)

Figure 15: Input-output functions for: a] Combinational دyatem; bj Sequential בystom.

Binary Numbers

- A decimal number such as 7392 can be represented as: $7 \times 10^{3}+3 \times 10^{2}+9 \times 10^{1}+2 \times 10^{0}$
- A number with a decimal point is represented by a series of coefficients as follows: $a_{5} a_{4} a_{3} a_{2} a_{1} a_{0 .} a_{-1} a_{-2} a_{-3}$
- The decimal equivalent of the binary 11010.11 is 26.75
$1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}=26.75$
- A number expressed in base-r system has coefficients multiplied by powers of r : $a_{n} \cdot r^{n}+a_{n-1} \cdot r^{n-1}+\ldots+a_{2} \cdot r^{2}+a_{1} \cdot r+a_{0}+a_{-1} \cdot r^{-1}+a_{-2} \cdot r^{-2}+\ldots+a_{-m} \cdot r^{-m}$ where $r=2,3,4 \ldots 8,9,10, \ldots 16 \ldots$

System	Radix	Allowable Digits
Binary	2	0,1
Octal	8	$0,1,2,3,4,5,6,7$
Decimal	10	$0,1,2,3,4,5,6,7,8,9$
Hexadecimal	16	$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$

$-(4021.2)_{5}=\quad 4 \times 5^{3}+0 \times 5^{2}+2 \times 5^{1}+1 \times 5^{0}+2 \times 5^{-1}=(511.4)_{10}$ $4 \times 125+0+10+1+2 \times(1 / 5)$ $500+11+.4$
$-(\mathrm{B} 65 \mathrm{~F})_{16}=11 \times 16^{3}+6 \times 16^{2}+5 \times 16^{1}+15 \times 16^{0}=(46687)_{10}$
$11 \times 4096+6 \times 256+5 \times 16+15$
$45056+1536+80+15$

Augend:	101101	minuend: 101101	multiplicand: 1011
Addend:	+ 100111	subtrahend: -100111	multiplier: \quad x 101
	1010100	000110	110111

Number Base Conversions

- A binary number can be converted to decimal by forming the sum of powers of 2 of those coefficients whose value is 1 .
$(1010.011)_{2}=2^{3}+2^{1}+2^{-2}+2^{-3}=(10.375)_{10}$
- Similarly, a number expressed in base r can be converted to its decimal equivalent by multiplying each coefficient with the corresponding power of r and adding.
$(630.4)_{8}=6 \times 8^{2}+3 \times 8^{1}+0 \times 8^{0}+4 \times 8^{-1}=(408.5)_{10}$
- Conversion from Decimal 41 to Binary:

Integer quotient		Remainder	Coefficient	
$41 / 2=$	20	+	$1 / 2$	$a_{0}=1$
$20 / 2=$	10	+	0	$a_{1}=0$
$10 / 2=$	5	+	0	$a_{2}=0$
$5 / 2=$	2	+	$1 / 2$	$a_{3}=1$
$2 / 2=$	1	+	0	$a_{4}=0$
$1 / 2=$	0	+	$1 / 2$	$a_{5}=1$

- The conversion from decimal integers to any base- r system is similar to the example, except that division is done by r instead of 2.
- Conversion from Decimal 153 to Octal:

- Conversion from Decimal fraction (0.6875) 10 to Binary:

	Integer		Fraction	Coefficient
$0.6875 \times 2=$	1	+	0.3750	$a_{-1}=1$
$0.3750 \times 2=$	0	+	0.7500	$a_{-2}=0$
$0.7500 \times 2=$	1	+	0.5000	$a_{-3}=1$
$0.5000 \times 2=$	1	+	0.0000	$a_{-4}=1$

- The conversion from decimal fraction to any base-r system is similar to the example. Multiplication is by r instead of 2, and the coefficients found from the integers may range in value from 0 to $r-1$ instead of $\mathbf{0}$ and 1.
- Conversion from Decimal fraction (0.513) 10 to Octal:

$$
\begin{aligned}
& 0.513 \times 8=4.104 \\
& 0.104 \times 8=0.832 \\
& 0.832 \times 8=6.656 \\
& 0.656 \times 8=5.248 \\
& 0.248 \times 8=1.984 \\
& 0.984 \times 8=7.872 \\
&(0.513)_{10}=(0.406517 \ldots)_{8}
\end{aligned}
$$

- The conversion of decimal numbers with both integers and fraction parts is done by converting the integer and fraction separately and then combining the two answers.

Octal and Hexadecimal Numbers

- The conversion from and to binary, octal and hexadecimal plays an important part in digital computers. Since $2^{3}=8$ and $2^{4}=16$, each octal digit corresponds to three binary digits and each hexadecimal digit corresponds to four binary digits.
- Conversion from binary to Octal:
$(10110001101011.111100000110)_{2}=(26153.7406)_{8}$
- Conversion from binary to Hexadecimal:
$(10110001101011.111100000110)_{2}=(2 C 6 B \cdot F 06)_{16}$
- Conversion from Octal to binary:
$(673.124)_{8}=(110111011.001010100)_{2}$
- Conversion from Hexadecimal to binary:
$(306 . D)_{16}=(001100000110.1101)_{2}$
- Conversion from Hexadecimal to Decimal:
(37B) ${ }_{16}$
$3 \times 16^{2}+7 \times 16^{1}+11 \times 16^{0}$
$=3 \times 256+7 \times 16+11 \times 1$
$=768+112+11$
$=(891) 10$

Complements

- Are used to simplify the subtraction operation and for logical manipulation.

Diminished Radix Complement

- Given a number N in base r having n digits, the ($r-1$)'s complement of N is defined as $(r-1)-N$. For decimal numbers, $r=10$ and $r-1=9$, so the ninth complement of N is $\left(10^{n}-1\right)-N$. Now, 10^{n} represents a number that consists of a single 1 followed by $n 0$'s. $10^{n}-1$ is a number represented by $n 9$'s.
- If $n=4 \rightarrow 10^{4}=10,000$ and $10^{4}-1=9999$.
- The 9's complement of 546700 is $999999-546700=453299$
- The 9's complement of 012398 is $999999-012398=987601$
- For binary numbers, $r=2$ and $r-1=1$, so the 1 's complement of N is $\left(2^{n}-1\right)-N$. 2^{n} is represented by a binary number that consists of a 1 followed by $n 0$'s.
- If $n=4 \rightarrow 2^{4}=(10000)_{2}$ and $2^{4}-1=(1111)_{2}$.
- The 1's complement of a binary number is formed by changing 1's to 0's and 0's to 1 's.

The 1's complement of 1011000 is 0100111
The 1 's complement of 0101101 is 1010010

Radix Complement

- The r 's complement of n-digit number N in base r is defined as $r^{n}-N$ for $N \neq 0$ and 0 for $N=0$. Comparing with the ($r-1$)'s complement, the r's complement is obtained by adding 1 to the $(r-1)$'s complement since $r^{n}-\mathrm{N}=\left[\left(r^{n}-1\right)-N\right]+1$.
- The 10's complement of decimal $2389=\left(10^{4}-1\right)-2389+1=7611$.
- The 2's complement of binary $101100=\left(2^{6}-1\right)-101100+1=010100$.
- The 10's complement of decimal $012389=\left(10^{6}-1\right)-012389+1=987602$.
- The 10's complement of decimal $246700=\left(10^{6}-1\right)-246700+1=753300$.
- The 2's complement can be formed by leaving the least significant 0's and the first 1 unchanged, and the replacing 1's with 0's and 0's with 1's in the other four mostsignificant digits.

The 2's complement of binary 1101100 is 0010100.

- The 2's complement of the following number is obtained by leaving the least significant 1 unchanged, and complementing all other digits.

The 2's complement of binary 0110111 is 1001001.

Summary

- The radix complement and diminished radix complement are defined as:
$(\mathrm{N})_{r}=$ an n-digit number N in base r
$[\mathrm{N}]_{r}=$ the r 's complement of $(\mathrm{N})_{r}$
$[\mathrm{N}]_{r-1}=$ the $(r-1)$'s complement of $(N)_{r}$
$[N]_{r}=r^{n}-(N)_{r} \quad$ (Eq.1)
$[N]_{r-1}=[N]_{r}-1 \quad$ (Eq.2)
From Eq. 1 and Eq.2, we can also derive the following equations:
$[\mathrm{N}]_{r}=[\mathrm{N}]_{r-1}+1$ (Eq.3)
$[N]_{r-1}=\left(r^{n}-1\right)-(N)_{r} \quad($ Eq.4)

In the decimal system, r=10, we have 10's complement and 9's complement. In the octal system, $r=8$, we have 8 's complement and 7's complement. In the binary system, $r=2$, we have 2 's complement and 1 's complement.

System Radix Complement Diminished Radix Complement

Decimal	10's complement	9's complement
Octal	8's complement	7's complement
Binary	2's complement	1's complement

To find the radix complement representation of a number, it is more convenient to first derive the diminished radix complement. The radix complement is then obtained by adding 1 to the diminished radix complement.

The 9's complement of a decimal number is obtained by subtracting each digit from 9 . The 7's complement of an octal number is obtained by subtracting each digit from 7. The 1 's complement of a binary integer is obtained by subtracting each digit from 1 .

Examples:

- Find the 10's complement and the 9's complement of (546700) 10
(453299) ${ }_{10}$ 9's complement $(453300)_{10}$ 10's complement (add 1 to the 9 's complement)
- Find the 8's complement and the 7's complement of (526071) 8 (251706) ${ }_{8}$ 7's complement (251707) $)_{8}$ 8's complement (add 1 to the 7 's complement)
- Find the 2's complement and the 1 's complement of (00011010) 2 $(11100101)_{2}$ 1's complement $(11100110)_{2}$ 2's complement (add 1 to the 1 's complement)

Subtraction with Complements

Example (1):

Using 10's complement, subtract $72532-3250$

$$
M \quad-N
$$

| M | $=$ | 72532 |
| ---: | :--- | ---: | :--- |
| 10's complement of N | $=+$ | $96750(99999-03250)+1$ |
| Sum | $=$ | 169282 |
| Discard end carry 10^{5} | $=-$ | $\frac{100000}{69282}$ |
| Answer | $=$ | |

Example (2):
Using 10's complement, subtract $3250-72532$
M - N
$\begin{aligned} M & =03250 \\ \text { 10's complement of } N & =+\underline{27468}(99999-72532)+1\end{aligned}$
Sum = 30718
No end carry.
Answer - (10's complement of 30718) =-69282
Example (3):
Using 2's complement, subtract $\begin{gathered}1010100-1000011 \\ X\end{gathered}$

Example (4):
Using 2's complement, subtract 1000011-1010100

Y	$=$
2's complement of X^{Y}	$=+000011$
Sum	$=$

No end carry.
Answer: $Y-X$ - (2's complement of 1101111) $=-0010001$
Example (5): Using 1's complement, subtract $\mathrm{X}-\mathrm{Y}=1010100$ - 1000011

$$
x=1010100
$$

1's complement of $Y=+\underline{0111100}$ (+1 End-around carry)
Sum $=-10010000$
Answer: $X-Y$
$=\xrightarrow[0010001]{ }$
Example (6): Using 1's complement, subtract $Y-X 1000011$ - 1010100

$$
Y=1000011
$$

1's complement of $X \quad=+\quad \underline{0101011}$
Sum $=\quad \underline{1101110}$
No end carry.
Answer: $Y-X-(1$'s complement of 1101110 $)=-0010001$

Signed Binary Numbers

- It is customary to represent the sign with a bit placed in the leftmost position of the number and to make it 0 for positive and 1 for negative.
- Consider the number 9 represented in binary with 8 bits. +9 is represented with sign bit 0 in the leftmost position followed by the binary equivalent of 9 to give 00001001 .

$$
00001001
$$

Signed magnitude $\quad \rightarrow \quad 10001001$
Signed-1's complement $\rightarrow \quad 11110110$
Signed-2's complement $\rightarrow \quad 11110111$

Arithmetic Addition

- The addition of 2 numbers in the signed-magnitude system follows the rules of ordinary arithmetic.
- If the signs are the same, we add the two magnitudes and give the sum the common sign.
- If the signs are different, we subtract the smaller magnitudes from the larger and give the result the sign of the larger magnitude.

+6	00000110	-6	11111010
+13	$\underline{00001101}$	+13	$\frac{00001101}{00000111}$
+6	00000110	-6	11111010
-13	$\frac{11110011}{11111001}$	-13	$\frac{11110011}{11101101}$

- Negative numbers must be in 2's complement and that the sum obtained after the addition if negative is in 2 's-complement form.

Arithmetic Subtraction

- Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend (including the sign bit). A carry out of the sign-bit position is discarded.

$$
\begin{aligned}
& (\pm A)-(+B)=(\pm A)+(-B) \\
& (\pm A)-(-B)=(\pm A)+(+B)
\end{aligned}
$$

Binary Codes

- Binary codes play an important role in digital computers. A bit is a binary digit. It is equal to 0 or 1 .
- Although the minimum number of bits required to code 2^{n} quantities is n, there is no maximum number of bits that may be used for a binary code.

Decimal Codes

- BCD (binary-code decimal) is a straight assignment of the binary equivalent. Check Table 1-2 page 18.

Error Detection Code

- Binary information can be transmitted from one location to another. External noise may change some of the bits from 0 to 1 and vice versa. To achieve error-detection we use a parity bit.
- A parity bit is an extra bit included with a message to the total number of 1 's transmitted either odd or even. See Table 1-3 Page 20.
- Two methods are implemented:
- Even Parity: the P bit is chosen so that the total number of 1 's in the five bits is even.
- Odd Parity: the P bit is chosen so that the total number of 1 's in the five bits is odd.

Gray Code

- Gray code is used to represent the digital data when it is converted from analog data. See Table 1-4 Page 21.
- The advantage of the Gray code over binary numbers is that only one bit in the code group changes when going from one number to the next.
- In Gray to go from 7 to 8:0100 $\rightarrow 1100$

In Binary to from: $\quad 7$ to 8: $0111 \rightarrow 1000$

ASCII Character Code

- The standard binary code for representation of alphanumeric characters is ASCII (American Standard Code for Information Interchange). It uses 7 bits to code 128 characters. See Table 1-5 Page 23.

Binary Storage \& Registers

Registers

- A register is a group of binary cells. Each cell stores one bit of information. The state of a register is an n-tuple of 1's and 0's, with each bit designating the state of one cell in the register.
- The content of a register is a function of the interpretation given to the information stored in it. See page 25.

Binary Logic

- Deals with variables that take on two discrete values and with operations that assume logical meaning.
- The 2 values may be called by different names (e.g. true/false, yes/no, 0/1)
- It is suited for the analysis and design of digital systems.

Definition of Binary Logic

- Consists of binary variables and logical operations.
- Variables: A, B, C, x, y, z, etc., with each variables having two values 1 and 0
- Logical Operations:
- AND: is represented by a dot or an absence of an operator.
- EX: $x \cdot y=z$ or $x y=z$ or is read as " x AND y is equal to z."
- It means $z=1$ iff $x=1$ and $y=1$; otherwise, $z=0$.
- $\underline{\mathrm{OR}}$: is represented by + sign.
- EX: $x+y=z$ or is read as " x OR y is equal to z."
- It means $z=1$ if $x=1$ or if $y=1$ or if $x=1$ and $y=1$. if both $x=0$ and $y=0$, then $z=0$.
- NOT: is represented by or ${ }^{\text {. }}$
- EX: $x^{\prime}=z($ or $\boldsymbol{O}=z)$ is read, "not x is equal to z," meaning that z is what x is not. In other words, if $x=1$, then $z=0$; but if $x=0$, then z $=1$.
- For each combination of values x and y, there is a value z specified by the definition of the logical operation. The definition is listed in compact form using truth tables.

Truth Table of Logical Operations

AND		OR			NOT	
x	y	$x \cdot y$	x	y	$x+y$	x
0	0	0	0	0	0	x
0	1	0	0	1	1	0
1	0	0	1	0	1	1
1	1	1	1	1	1	1

Logic Gates

- Electronic digital circuits are called logic circuits because, with the proper input, they establish logical manipulation paths. See Fig. 1 - 6 Page 31.

Two-input AND gate
Two-input OR gate
Not gate or inverter

